Inamuddin, PhD, is an assistant professor at the Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India. He has extensive research experience in analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of multiple awards, including the Fast Track Young Scientist Award and the Young Researcher of the Year Award for 2020, from Aligarh Muslim University. He has published almost 200 research articles in various international scientific journals, 18 book chapters, and 120 edited books with multiple well-known publishers. Mohd Imran Ahamed, PhD, is a research associate in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in various international scientific journals and has co-edited multiple books. His research work includes ion-exchange chromatography, wastewater treatment, and analysis, bending actuator and electrospinning. Rajender Boddula, PhD, is currently working for the Chinese Academy of Sciences President’s International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals. He is also serving as an editorial board member and a referee for several reputed international peer-reviewed journals. He has published edited books with numerous publishers and has authored over twenty book chapters. Mashallah Rezakazemi, PhD, received his doctorate from the University of Tehran (UT) in 2015. In his first appointment, he served as associate professor in the Faculty of Chemical and Materials Engineering at Shahrood University of Technology. He has co-authored in more than 140 highly cited journal publications, conference articles and book chapters. He has received numerous major awards and grants from various funding agencies in recognition of his research. Notable among these are Khwarizmi Youth Award from the Iranian Research Organization for Science and Technology (IROST), and the Outstanding Young Researcher Award in Chemical Engineering from the Academy of Sciences of Iran. He was named a top 1% most Highly Cited Researcher by Web of Science (ESI). Preface xv 1 Organic Solar Cells 1 Yadavalli Venkata Durga Nageswar and Vaidya Jayathirtha Rao 1.1 Introduction 1 1.2 Classification of Solar Cells 3 1.3 Solar Cell Structure 4 1.4 Photovoltaic Parameters or Terminology Used in BHJOSCs 5 1.4.1 Open-Circuit Voltage Voc 5 1.4.2 Short-Circuit Current Jsc 5 1.4.3 Incident-Photon-to-Current Efficiency (IPCE) 5 1.4.4 Power Conversion Efficiency etap (PCE) 6 1.4.5 Fill Factor (FF) 6 1.5 Some Basic Design Principles/Thumb Rules Associated With Organic Materials Required for BHJOSCs 6 1.6 Recent Research Advances in Small-Molecule Acceptor and Polymer Donor Types 7 1.7 Recent Research Advances in All Small-Molecule Acceptor and Donor Types 30 1.8 Conclusion 47 Acknowledgement 48 References 48 2 Plasmonic Solar Cells 55 T. Shiyani, S. K. Mahapatra and I. Banerjee 2.1 Introduction 56 2.1.1 Plasmonic Nanostructure 58 2.1.2 Classification of Plasmonic Nanostructures 59 2.2 Principles and Working Mechanism of Plasmonic Solar Cells 60 2.2.1 Working Principle 60 2.2.2 Mechanism of Plasmonic Solar Cells 61 2.3 Important Optical Properties 62 2.3.1 Trapping of Light 63 2.3.2 Scattering and Absorption of Sunlight 63 2.3.3 Multiple Energy Levels 63 2.4 Advancements in Plasmonic Solar Cells 64 2.4.1 Direct Plasmonic Solar Cells 65 2.4.2 Plasmonic-Enhanced Solar Cell 69 2.4.3 Plasmonic Thin Film Solar Cells 69 2.4.4 Plasmonic Dye-Sensitized Solar Cells (PDSSCs) 70 2.4.5 Plasmonic Photoelectrochemical Cells 71 2.4.6 Plasmonic Quantum Dot (QD) Solar Cells 71 2.4.7 Plasmonic Perovskite Solar Cells 72 2.4.8 Plasmonic Hybrid Solar Cells 72 2.5 Conclusion and Future Aspects 72 Acknowledgements 73 References 73 3 Tandem Solar Cell 83 Umesh Fegade List of Abbreviations 83 3.1 Introduction 85 3.2 Review of Organic Tandem Solar Cell 86 3.3 Review of Inorganic Tandem Solar Cell 89 3.4 Conclusion 95 References 96 4 Thin-Film Solar Cells 103 Gobinath Velu Kaliyannan, Raja Gunasekaran, Santhosh Sivaraj, Saravanakumar Jaganathan and Rajasekar Rathanasamy 4.1 Introduction 104 4.2 Why Thin-Film Solar Cells? 105 4.3 Amorphous Silicon 105 4.4 Cadmium Telluride 108 4.5 Copper Indium Diselenide Solar Cells 111 4.6 Comparison Between Flexible a-Si:H, CdTe, and CIGS Cells and Applications 112 4.7 Conclusion 113 References 114 Contents vii 5 Biohybrid Solar Cells 117 Sapana Jadoun and Ufana Riaz Abbreviations 117 5.1 Introduction 118 5.2 Photovoltaics 119 5.3 Solar Cells 119 5.3.1 First-Generation 120 5.3.2 Second-Generation 120 5.3.3 Third-Generation 120 5.3.4 Fourth-Generation 121 5.4 Biohybrid Solar Cells 121 5.5 Role of Photosynthesis 122 5.6 Plant-Based Biohybrid Devices 122 5.6.1 PS I-Based Biohybrid Devices 123 5.6.2 PS II-Based Biohybrid Devices 125 5.7 Dye-Sensitized Solar Cells 126 5.8 Polymer and Semiconductors-Based Biohybrid Solar Cells 126 5.9 Conclusion 129 References 129 6 Dye-Sensitized Solar Cells 137 Santhosh Sivaraj, Gobinath Velu Kaliyannan, Mohankumar Anandraj, Moganapriya Chinnasamy and Rajasekar Rathanasamy 6.1 Introduction 138 6.2 Cell Architecture and Working Mechanism 139 6.3 Fabrication of Simple DSSC in Lab Scale 142 6.4 Electrodes 144 6.5 Counter Electrode 145 6.6 Blocking Layer 146 6.7 Electrolytes Used 147 6.7.1 Liquid-Based Electrolytes 148 6.7.1.1 Electrical Additives 148 6.7.1.2 Organic Solvents 148 6.7.1.3 Ionic Liquids 149 6.7.1.4 Iodide/Triiodide-Free Mediator and Redox Couples 149 6.7.2 Quasi-Solid-State Electrolytes 149 6.7.2.1 Thermoplastic-Based Polymer Electrolytes 150 6.7.2.2 Thermosetting Polymer Electrolytes 150 6.7.3 Solid-State Transport Materials 150 6.7.3.1 Inorganic Hole Transport Materials 151 6.7.3.2 Organic Hole Transport Materials 151 6.7.3.3 Solid-State Ionic Conductors 151 6.8 Commonly Used Natural Dyes in DSSC 152 6.8.1 Chlorophyll 152 6.8.2 Flavonoids 152 6.8.3 Anthocyanins 153 6.8.4 Carotenoids 154 6.9 Calculations 154 6.9.1 Power Conversion Efficiency 154 6.9.2 Fill Factor 163 6.9.3 Open-Circuit Voltage 163 6.9.4 Short Circuit Current 163 6.9.5 Determination of Energy Gap of Electrode Material Adsorbed With Natural Dye 163 6.9.6 Absorption Coefficient 164 6.9.7 Dye Adsorption 164 6.10 Conclusion 164 References 165 7 Characterization and Theoretical Modeling of Solar Cells 169 Masoud Darvish Ganji, Mahyar Rezvani and Sepideh Tanreh 7.1 Introduction 170 7.2 Classification of SC 172 7.2.1 Inorganic Solar Cells 173 7.2.2 Organic Solar Cell 173 7.3 Working Principle of DSSC 175 7.4 Operation Principle of DSSC 176 7.5 Photovoltaic Parameters 177 7.6 Theoretical and Computational Methods 181 7.6.1 Density Functional Theory (DFT) 182 7.6.2 Basis Sets 183 7.6.3 TDDFT Method 183 7.6.4 Molecular Descriptors 184 7.6.5 Force Field Parameterization for MD Simulations 188 7.6.6 Excited States 189 7.6.7 UV-Vis Spectroscopy 190 7.6.8 Charge Transfer and Carrier Transport 192 7.6.9 Coarse-Grained (CG) Simulations 193 7.6.10 Kinetic Monte Carlo (KMC) Modeling 193 7.6.11 Car-Parrinello Method 195 7.6.12 Solvent Effects 196 7.6.13 Global Reactivity Descriptors 196 7.7 Conclusion 198 References 199 8 Efficient Performance Parameters for Solar Cells 217 Figen Balo and Lutfu S. Sua 8.1 Introduction 218 8.1.1 Potential, Production, and Climate of Ankara 225 8.2 Solar Radiation Intensity Calculation 225 8.2.1 Horizontal Superficies 225 8.2.1.1 On a Daily Basis Total Sun Irradiation 225 8.2.1.2 Daily Diffuse Sun Irradiation 227 8.2.1.3 Momentary Total Sun Irradiation 227 8.2.1.4 Direct and Diffuse Sun Radiation 228 8.2.2 On Inclined Superficies, Computing Sun Irradiation Intensity 228 8.2.2.1 Direct Momentary Sun Radiation 228 8.2.2.2 Diffuse Sun Radiation 228 8.2.2.3 Momentary Reflecting Radiation 229 8.2.2.4 Total Sun Radiation 229 8.3 Methodology 229 8.3.1 The Solar Radiation Assessments by Correlation Models With MATLAB Simulation Software 229 8.3.2 MATLAB Simulation Results and Findings 233 8.3.3 For Ankara Province, the Determinants of the Most Efficiency Solar Cell With AHP Methodology 233 8.4 Conclusions 238 References 240 9 Practices to Enhance Conversion Efficiencies in Solar Cell 247 Andreea Irina Barzic 9.1 Introduction 247 9.2 Basics on Conversion Efficiency 249 9.3 Approaches for Improving Conversion Efficiencies in Solar Cells 253 9.4 Conclusion 264 Acknowledgements 264 References 265 10 Solar Cell Efficiency Energy Materials 271 Zeeshan Abid, Faiza Wahad, Sughra Gulzar, Muhammad Faheem Ashiq, Muhammad Shahid Aslam, Munazza Shahid, Muhammad Altaf and Raja Shahid Ashraf 10.1 Introduction 272 10.2 Solar Cell Efficiency 274 10.3 Historical Development of Solar Cell Materials 275 10.4 Solar Cell Materials and Efficiencies 277 10.4.1 Crystalline Silicon 278 10.4.2 Silicon Thin-Film Alloys 282 10.4.3 III-V Semiconductors 284 10.4.4 Chalcogenide 287 10.4.4.1 Chalcopyrites 287 10.4.4.2 Cadmium Telluride (CdTe) 288 10.4.5 Organic Materials 289 10.4.6 Hybrid Organic-Inorganic Materials 293 10.4.6.1 Dye-Sensitized Solar Cell Materials 293 10.4.6.2 Perovskites 296 10.4.7 Quantum Dots 300 10.5 Conclusion and Prospects 302 References 303 11 Analytical Tools for Solar Cell 317 Mohamad Saufi Rosmi, Ong Suu Wan, Mohamad Azuwa Mohamed, Zul Adlan Mohd Hir and Wan Nur Aini Wan Mokhtar 11.1 Introduction 318 11.2 Transient Absorption Spectroscopy 319 11.2.1 Application of Transient Absorption Spectroscopy in Solar Cells 320 11.3 Electron Tomography 323 11.3.1 Application of Electron Tomography (ET) in Solar Cells 324 11.4 Conductive Atomic Force Microscopy (C-AFM) 327 11.4.1 Application of C-AFM in Solar Cells 329 11.5 Kelvin Probe Force Microscopy 330 11.5.1 Application of Scanning Kelvin Probe Force Microscopy for Solar Cells 334 11.6 Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy 335 11.6.1 Application of Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy in Solar Cell 338 11.7 Conclusion 340 References 340 12 Applications of Solar Cells 345 Mohd Imran Ahamed and Naushad Anwar 12.1 Introduction 345 12.2 An Overview on Photovoltaic Cell 348 12.2.1 History 348 12.2.2 Working Principle of Solar Cell 348 12.2.3 First-Generation Photovoltaic Cells: Crystalline Silicon Form 351 12.2.4 Second-Generation Photovoltaic Cells: Thin-Film Solar Cells 352 12.2.5 Third-Generation Photovoltaic Cells 353 12.3 Applications of Solar Cells 354 12.3.1 Perovskite Solar Cell 354 12.3.2 Dye-Sensitized Solar Cell 355 12.3.3 Nanostructured Inorganic-Organic Heterojunction Solar Cells (NSIOHSCs) 356 12.3.4 Polymer Solar Cells 357 12.3.5 Quantum Dot Solar Cell (QDCs) 358 12.3.6 Organic Solar Cells 360 12.4 Conclusion and Summary 362 References 362 13 Challenges of Stability in Perovskite Solar Cells 371 Mutayyab Afreen, Jazib Ali and Muhammad Bilal 13.1 Introduction 371 13.2 Degradation Phenomena and Stability Measures in Perovskite 373 13.2.1 Thermal Stability 373 13.2.2 Structural and Chemical Stability 375 13.2.3 Oxygen and Moisture 376 13.2.4 Visible and UV Light Exposure 378 13.3 Stability-Interface Interplay 379 13.3.1 Chemical Reaction at the Interface 379 13.3.2 Degradation on the Top Electrode 380 13.3.3 Hysteresis Phenomenon in PSC Devices 381 13.4 Effect of Selective Contacts on Stability 382 13.4.1 Electron-Transport Layers 382 13.4.2 Hole Transport Layers 384 13.4 Conclusion 387 References 387 14 State-of-the-Art and Prospective of Solar Cells 393 Zahra Pezeshki and Abdelhalim Zekry Acronyms 393 14.1 Introduction 396 14.2 State-of-the-Art of Solar Cells 396 14.2.1 Production Volume 400 14.2.2 Cost Breakdown 400 14.2.3 Main Technologies 401 14.2.3.1 Si Solar Cell Arrays 401 14.2.3.2 DSSCs 403 14.2.3.3 Photoanodes 404 14.2.3.4 C/Si Heterojunctions 404 14.2.3.5 a-C/Si Heterojunctions 410 14.2.3.6 Non-Fullerene Acceptor Bulk Heterojunctions 410 14.2.3.7 a-Si 411 14.2.3.8 Perovskites 411 14.2.3.9 Metal-Halide-Based Perovskites 413 14.2.3.10 Sn-Based Perovskites 415 14.2.3.11 Heavily Doped Solar Cells 416 14.2.3.12 PV Building Substrates 416 14.2.3.13 Solar Tracking System 422 14.2.3.14 Solar Concentrators 425 14.2.3.15 Solar Power Satellite 426 14.2.3.16 Roof-Top Solar PV System 427 14.2.3.17 Short-Wavelength Solar-Blind Detectors 428 14.2.3.18 GCPVS 429 14.2.3.19 Microwave Heating in Si Solar Cell Fabrication 431 14.2.3.20 Refrigeration PV System 432 14.2.3.21 Solar Collectors and Receivers 433 14.2.3.22 Solar Drying System 435 14.2.3.23 Water Networks With Solar PV Energy 436 14.2.3.24 Wind and Solar Integrated to Smart Grid 437 14.2.3.25 Green Data Centers 440 14.3 Prospective of Solar Cells 443 14.4 Conclusion 445 References 447 15 Semitransparent Perovskite Solar Cells 461 Faiza Wahad, Zeeshan Abid, Sughra Gulzar, Muhammad Shahid Aslam, Saqib Rafique, Munazza Shahid, Muhammad Altaf and Raja Shahid Ashraf 15.1 Introduction 462 15.2 Device Architectures 464 15.2.1 Conventional n-i-p Device Structure 465 15.2.2 Inverted p-i-n Device Structure 465 15.3 Optical Assessment 466 15.3.1 Average Visible Transmittance 466 15.3.2 Corresponding Color Temperature 467 15.3.3 Color Rendering Index 468 15.3.4 Transparency Color Perception 468 15.3.5 Light Management 471 15.4 Materials 474 15.4.1 Photoactive Layer 474 15.4.2 Charge Transport Layers (ETL and HTL) 479 15.4.3 Transparent Electrode 481 15.5 Applications 484 15.5.1 Building-Integrated Photovoltaics 484 15.5.2 Tandem Devices 486 15.6 Conclusion 492 References 492 16 Flexible Solar Cells 505 Santosh Patil, Rushi Jani, Nisarg Purabiarao, Archan Desai, Ishan Desai and Kshitij Bhargava 16.1 Introduction 505 16.1.1 Need for Solar Energy Harnessing 505 16.1.2 Brief Overview of Generations of Solar Cells 506 16.1.3 Limitations of Solar Cells 508 16.1.4 What is Flexible Solar Cell (FSC)? 509 16.2 Materials for FSCs 510 16.2.1 Semiconductors 510 16.2.2 Substrates 512 16.2.3 Electrodes 513 16.2.4 Encapsulations 514 16.3 Thin-Film Deposition 514 16.3.1 R2R Processing 515 16.3.2 Chemical Bath Deposition 516 16.3.3 Chemical Vapor Deposition 517 16.3.4 Dip Coating 518 16.3.5 Spin Coating 520 16.3.6 Screen Printing 521 16.4 Characterizations for FSCs 522 16.4.1 Material Characterization 523 16.4.2 Device Characterization 529 16.5 Issues in FSCs 531 16.6 Performance Comparison of RSCs and FSCs 532 16.7 Applications of Flexible Solar Cell 532 16.8 Conclusion 533 References 534 Index 537

ISBN

Page Number

Author

Publisher

Awaiting product image
Fundamentals of Solar Cell Design
Original price was: $49.00.Current price is: $14.00.

In stock