Stable and Efficient Cubature-Based Filtering in Dynamical Systems
Original price was: $72.00.$14.00Current price is: $14.00.
Stable and Efficient Cubature-Based Filtering in Dynamical Systems, Francisco S. N. Lobo, 9783319872391
In stock
Contents vi List of Figures viii List of Tables ix List of symbols and abbreviations x 1 Introduction 1 1.1 Problem statement and objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Filtering in dynamical systems 5 2.1 The general discrete state-space model . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 The Bayes lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 The Kalman lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 The Kalman lter algorithm in the case of the Gaussian linear discrete statespace model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 The nonlinear Kalman lter and the Gaussian assumption . . . . . . . . . . 12 2.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 Maximum Likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2 Bayesian parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Conditional ltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 Stabilization of nonlinear Kalman lter algorithms . . . . . . . . . . . . . . . . . . . 37 2.7 Treatment of missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 Deterministic numerical Integration 41 3.1 One-dimensional deterministic numerical integration . . . . . . . . . . . . . . . . . . 42 3.1.1 Lagrange interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.2 Moment equations for the one-dimensional case . . . . . . . . . . . . . . . . 43 3.1.3 Gauss quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.4 Clenshaw-Curtis quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 Multidimensional deterministic numerical integration . . . . . . . . . . . . . . . . . 56 3.2.1 Stability Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2 A lower bound for the number of abscissae . . . . . . . . . . . . . . . . . . . 58 3.2.3 Polynomials in d dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.4 Product cubature rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.5 Moment equations for the d-dimensional case . . . . . . . . . . . . . . . . . 61 3.2.6 Smolyak cubature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.7 Compound rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753.2.8 Change of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 Optimization and stabilization of cubature rules 78 4.1 Cubature rules based on a least squares approach . . . . . . . . . . . . . . . . . . . 78 4.2 Construction of stabilized Smolyak cubature rules . . . . . . . . . . . . . . . . . . . 83 4.2.1 Stabilized(1) rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2.2 Stabilized(2) rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.3 Smolyak cubature rules with an approximate degree of exactness . . . . . . . 90 5 Simulation studies 93 5.1 The univariate non-stationary growth model . . . . . . . . . . . . . . . . . . . . . . 96 5.2 The six-dimensional coordinated turn model . . . . . . . . . . . . . . . . . . . . . . 101 5.3 The Lorenz model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.4 The Ginzburg-Landau model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6 Results 117 Appendix A The conditional mean 120 Appendix B The moments of the conditional normal distribution 122 Appendix C The Golub-Welsch algorithm 124 Appendix D Simplied multidimensional moment equations 128 Index 130 Bibliography
ISBN | |
---|---|
Page Number | |
Author | |
Publisher |